ECM50-A07工控机的智慧农业精准灌溉系统工作原理及方案部署详解
2025年12月25日 13:44 发布者:成都亿佰特
一、工作流程详细设计1、数据采集流程# ECM50-A07 数据采集核心逻辑(MicroPython示例)import machineimport timefrom lora import LoRafrom modbus import ModbusRTUclass DataCollector: def __init__(self): # 初始化LoRa模块 self.lora = LoRa( frequency=433000000, # 433MHz频段 bandwidth=500000, # 500kHz带宽 sf=7, # 扩频因子 coding_rate=5 # 编码率 )# 初始化RS485接口(气象站) self.modbus = ModbusRTU( uart=machine.UART(1, baudrate=9600), pins=('GPIO17', 'GPIO16') # TX, RX )
# 初始化模拟量输入 self.adc1 = machine.ADC(machine.Pin(34)) # AI1 self.adc2 = machine.ADC(machine.Pin(35)) # AI2
# 传感器数据缓冲区 self.sensor_data = { 'soil_moisture': [], # 土壤湿度(%) 'soil_temperature': [], # 土壤温度(℃) 'air_temperature': [], # 空气温度(℃) 'air_humidity': [], # 空气湿度(%) 'rainfall': 0, # 降雨量(mm) 'water_level': 0, # 水位(m) }
def collect_lora_data(self): """采集LoRa传感器数据""" # 轮询所有LoRa节点 for node_id in self.lora_nodes: # 发送数据请求 self.lora.send(f"REQ:{node_id}")
# 等待响应(带超时) start_time = time.time() while time.time() - start_time < 2: # 2秒超时 if self.lora.available(): data = self.lora.receive() if data.startswith(f"DATA:{node_id}"): # 解析传感器数据 self._parse_sensor_data(node_id, data) break
def collect_ai_data(self): """采集模拟量传感器数据""" # 读取水位传感器(4-20mA转电压) adc_value1 = self.adc1.read() voltage1 = (adc_value1 / 4095) * 3.3 # ESP32 ADC参考电压3.3V
# 4-20mA转实际水位(假设量程0-5米) # 4mA对应0米,20mA对应5米 current1 = (voltage1 / 120) * 1000 # 假设使用120Ω采样电阻 if 4 <= current1 <= 20: water_level = (current1 - 4) * (5 / 16) # 5米量程 self.sensor_data['water_level'] = water_level
# 读取第二个AI通道(可接土壤EC值传感器) adc_value2 = self.adc2.read() # ... 类似处理逻辑
def run_collection_cycle(self): """执行完整的数据采集周期""" # 步骤1:采集LoRa传感器数据 self.collect_lora_data()
# 步骤2:采集RS485气象站数据 self.collect_weather_data()
# 步骤3:采集模拟量传感器 self.collect_ai_data()
# 步骤4:采集数字量状态 self.check_di_status()
return self.sensor_data2、智能决策引擎灌溉决策算法:
class IrrigationDecision: def __init__(self, config): self.config = config # 灌溉策略配置 self.history = [] # 历史决策记录
def make_decision(self, sensor_data, weather_forecast): """核心决策函数""" decision = { 'need_irrigation': False, 'valve_id': None, 'duration': 0, 'water_amount': 0, 'fertilizer': False, 'reason': '' }
# 1. 基于土壤湿度的决策 soil_moisture = sensor_data.get('soil_moisture', []) if soil_moisture: avg_moisture = sum(soil_moisture) / len(soil_moisture)
# 获取作物适宜湿度范围 crop_config = self.config['crops'].get(sensor_data['crop_type'], {}) min_moisture = crop_config.get('min_moisture', 30)
if avg_moisture < min_moisture: decision['need_irrigation'] = True decision['reason'] = f'土壤湿度低于阈值({avg_moisture:.1f}% < {min_moisture}%)'
# 计算灌溉量(基于水分亏缺模型) deficit = min_moisture - avg_moisture decision['water_amount'] = self._calculate_water_amount( deficit, sensor_data['soil_type'], sensor_data['crop_stage'] )
# 2. 考虑天气预报(避免灌溉后立即下雨) if weather_forecast.get('rain_probability', 0) > 70: if decision['need_irrigation']: # 如果预报有雨,减少灌溉量或推迟灌溉 decision['water_amount'] *= 0.5 decision['reason'] += ' | 降雨概率高,减少灌溉量'
# 3. 考虑蒸发蒸腾量(ET0) et0 = self._calculate_et0( sensor_data['air_temperature'], sensor_data['air_humidity'], sensor_data['solar_radiation'], sensor_data['wind_speed'] )
# 作物系数法计算作物需水量 crop_water_needed = et0 * crop_config.get('kc_factor', 0.8) if crop_water_needed > 0: decision['water_amount'] = max(decision['water_amount'], crop_water_needed)
# 4. 决策优化(考虑灌溉效率) if decision['water_amount'] > 0: decision['duration'] = self._calculate_irrigation_duration( decision['water_amount'], self.config['valve_flow_rate'] )
# 选择最优阀门(基于分区优先级) decision['valve_id'] = self._select_valve(sensor_data['zone_priority'])
return decision
def _calculate_water_amount(self, deficit, soil_type, crop_stage): """计算灌溉水量(mm)""" # 土壤持水能力参数 soil_params = { 'sand': {'field_capacity': 12, 'wilting_point': 4}, 'loam': {'field_capacity': 28, 'wilting_point': 12}, 'clay': {'field_capacity': 35, 'wilting_point': 18}, }
# 作物生长阶段系数 stage_coeff = { 'seedling': 0.4, 'vegetative': 0.7, 'flowering': 1.0, 'fruiting': 0.9, 'mature': 0.5, }
soil = soil_params.get(soil_type, soil_params['loam']) available_water = soil['field_capacity'] - soil['wilting_point']
# 灌溉量 = 水分亏缺量 × 根系深度 × 阶段系数 root_depth = self.config['root_depth'].get(crop_stage, 0.3) # 默认0.3m stage_factor = stage_coeff.get(crop_stage, 1.0)
# 转换为毫米(1mm = 1L/m²) water_mm = deficit * available_water * root_depth * 1000 * stage_factor
return max(water_mm, 0)3、设备控制流程class IrrigationController: def __init__(self): # 初始化DO控制引脚 self.valve1 = machine.Pin(12, machine.Pin.OUT) # 电磁阀1 self.valve2 = machine.Pin(13, machine.Pin.OUT) # 电磁阀2 self.pump = machine.Pin(14, machine.Pin.OUT) # 水泵
# 初始化DI监测引脚 self.pump_status = machine.Pin(25, machine.Pin.IN) # 水泵状态反馈 self.valve_feedback = machine.Pin(26, machine.Pin.IN) # 阀门反馈
# 控制状态 self.status = { 'valve1': False, 'valve2': False, 'pump': False, 'last_irrigation': None, 'total_water_used': 0, }
def execute_irrigation(self, decision): """执行灌溉控制""" if not decision['need_irrigation']: return {'success': True, 'message': '无需灌溉'}
try: # 1. 启动水泵(先开水泵,后开阀门) self._start_pump() time.sleep(2) # 等待水泵稳定
# 2. 开启指定阀门 valve_map = {1: self.valve1, 2: self.valve2} valve_pin = valve_map.get(decision['valve_id'], self.valve1) valve_pin.value(1)
# 3. 开始计时灌溉 start_time = time.time() irrigation_duration = decision['duration'] * 60 # 转为秒
# 4. 灌溉过程监控 while (time.time() - start_time) < irrigation_duration: # 实时监测设备状态 if not self._check_device_status(): self._emergency_stop() return {'success': False, 'message': '设备故障'}
# 计算已用水量 flow_rate = self.config['valve_flow_rate'] # L/min elapsed_min = (time.time() - start_time) / 60 self.status['total_water_used'] = flow_rate * elapsed_min
time.sleep(1) # 每秒检查一次
# 5. 灌溉结束(先关阀门,后关水泵) valve_pin.value(0) time.sleep(1) self._stop_pump()
# 6. 记录灌溉日志 self._log_irrigation(decision)
return { 'success': True, 'water_used': self.status['total_water_used'], 'duration': irrigation_duration / 60, }
except Exception as e: self._emergency_stop() return {'success': False, 'message': str(e)}
def _emergency_stop(self): """紧急停止所有设备""" self.valve1.value(0) self.valve2.value(0) self.pump.value(0)4、数据上报与云平台集成MQTT数据上报协议:
class CloudConnector: def __init__(self): self.mqtt_client = None self.last_upload = 0 self.data_buffer = []
# MQTT配置 self.config = { 'server': 'mqtt.ebytecloud.com', 'port': 1883, 'client_id': 'ecm50_a07_' + self._get_device_id(), 'username': 'device', 'password': '加密的设备密钥', 'topics': { 'data': 'agriculture/irrigation/data', 'control': 'agriculture/irrigation/control', 'status': 'agriculture/irrigation/status', 'alarm': 'agriculture/irrigation/alarm', } }
def upload_data(self, sensor_data, irrigation_log): """上传数据到云平台""" # 构建标准数据格式 payload = { 'device_id': self.config['client_id'], 'timestamp': time.time(), 'location': self._get_gps_coordinates(), 'sensors': sensor_data, 'irrigation': irrigation_log, 'battery': self._get_battery_level(), 'signal_strength': self._get_signal_strength(), }
# 数据压缩和加密 compressed = self._compress_data(payload) encrypted = self._encrypt_data(compressed)
# MQTT发布 try: self.mqtt_client.publish( self.config['topics']['data'], encrypted, qos=1, # 至少送达一次 retain=False ) return True except: # 网络异常,数据暂存本地 self._store_locally(payload) return False
def receive_control_command(self): """接收云端控制指令""" # 订阅控制主题 self.mqtt_client.subscribe(self.config['topics']['control'])
# 在回调函数中处理指令 def on_message(client, topic, message): if topic == self.config['topics']['control']: command = self._decrypt_data(message) self._execute_remote_command(command)
return on_message
二、实施与部署方案1、部署实施步骤第一阶段:现场勘测与规划(1-2周)
1. 农田地形测绘与分区2. 土壤性质检测3. 水源与电力评估4. 传感器布点规划5. 通信链路测试第二阶段:设备安装与调试(2-3周)
1. ECM50-A07网关安装: ├── 选择中心位置 ├── 防水箱安装 ├── 太阳能供电系统 └── 防雷接地处理2. 传感器网络部署: ├── 土壤传感器安装(深度:20-40cm) ├── 气象站安装(高度:2m) ├── 水位传感器安装 └── LoRa中继部署(如需要)3. 执行机构安装: ├── 电磁阀安装 ├── 水泵控制箱 └── 管路与布线第三阶段:系统配置与测试(1周)
1. 网关参数配置: ├── LoRa网络参数 ├── 灌溉策略设置 ├── 通信参数配置 └── 报警阈值设置2. 云平台对接: ├── 设备注册 ├── 数据通道测试 ├── 控制指令测试 └── 用户权限配置3. 系统联调: ├── 全功能测试 ├── 压力测试 ├── 故障恢复测试 └── 用户培训2、维护与运维计划日常维护:
[*]每周:检查设备状态,清理传感器
[*]每月:校准传感器,检查供电系统
[*]每季度:固件升级,系统优化
远程监控:
class RemoteMaintenance: def check_system_health(self): """系统健康度检查""" metrics = { 'gateway': { 'cpu_usage': self.get_cpu_usage(), 'memory_free': self.get_free_memory(), 'disk_usage': self.get_disk_usage(), 'uptime': self.get_uptime(), }, 'network': { 'lora_signal': self.get_lora_rssi(), 'nodes_online': self.get_online_nodes(), 'packet_loss': self.get_packet_loss(), }, 'power': { 'battery_level': self.get_battery_level(), 'solar_input': self.get_solar_power(), 'power_mode': self.get_power_mode(), } } return metrics
基于ECM50-A07工业级可编程工控机的智慧农业精准灌溉系统,通过创新的"边缘智能+LoRa通信"架构,为现代农业生产提供了一套高效、可靠、易用的完整解决方案。该系统不仅解决了传统灌溉中的水资源浪费问题,更通过智能化管理显著提升了农业生产效率和经济效益。
本方案具备快速部署、易于扩展、维护简便的特点,可广泛应用于大田作物、设施农业、果园、茶园等多种农业场景,是推动农业现代化、实现可持续发展的理想选择。
