原子“热插拔”:量子计算迎来可扩展性新突破
2025年09月22日 17:28 发布者:eechina
美国哈佛大学的一项最新研究展示了一种创新型原子“传送带”系统,该技术有望彻底解决中性原子量子计算中因原子丢失导致的可扩展性难题。研究团队通过光镊阵列实现了原子的实时补充与替换,为大规模量子计算机的开发开辟了新路径。该研究成果最近发表于《自然》(Nature)杂志。在当前量子计算领域,超导电路(谷歌、IBM主导)和囚禁离子技术仍占据主流地位。而中性原子量子计算作为新兴路线,凭借其独特的并行操控能力和近期获得的重大投资,正迅速成为最有潜力的竞争方案之一。
哈佛大学团队在该项研究中实现了技术突破。他们在高真空装置中构建了包含超过3000个铷原子的二维阵列,原子间距精确控制在9微米。创新性地在运算阵列下方设置了原子储层,通过光镊技术将储层原子逐个传输至制备区,形成预备阵列。通过精密操控,新阵列可准确替换原有阵列,实现“热插拔”式原子更新。
该系统的核心创新在于采用“逻辑量子比特”架构——将量子信息编码在原子组而非单个原子上。这种设计确保了即使部分原子丢失,量子信息仍能保持完整并可转移至新阵列。同时,研究团队还实现了替换过程中的实时误差校正,通过在淘汰旧阵列前读取其量子态,有效修正计算错误。
尽管该技术尚未投入实际量子计算应用,但团队已通过辅助研究证明,基于原子阵列的误差校正能力已达到与其他量子计算平台相当的稳健性水平。这项突破不仅大幅提升了中性原子量子计算的实用性,更使其成为当前最具发展前景的量子计算实现方案之一。
此项研究标志着量子计算技术竞争进入新阶段,中性原子平台有望引领下一代大规模量子计算机的发展方向。
--《自然》网站(www.nature.com)