如何用OpenCV进行人脸疲劳检测--基于米尔瑞芯微RK3576开发板

2024年12月19日 11:37    发布者:swiftman
本篇源自:优秀创作者 lulugl本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的人脸疲劳检测方案测试。米尔基于RK3576核心板/开发板【前言】人脸疲劳检测:一种通过分析人脸特征来判断一个人是否处于疲劳状态的技术。其原理主要基于计算机视觉和机器学习方法。当人疲劳时,面部会出现一些特征变化,如眼睛闭合程度增加、眨眼频率变慢、打哈欠、头部姿态改变等。
例如,通过检测眼睛的状态来判断疲劳程度是一个关键部分。正常情况下,人的眨眼频率相对稳定,而当疲劳时,眨眼频率会降低,并且每次眨眼时眼睛闭合的时间可能会延长。同时,头部可能会不自觉地下垂或者摇晃,这些特征都可以作为疲劳检测的依据。米尔MYC-LR3576采用8核CPU+搭载6 TOPS的NPU加速器,3D GPU,能够非常轻松的实现这个功能,下面就如何实现这一功能分享如下:【硬件】1、米尔MYC-LR3576开发板
2、USB摄像头【软件】1、v4l2
2、openCV
3、dlib库:dlib 是一个现代化的 C++ 工具包,它包含了许多用于机器学习、图像处理、数值计算等多种任务的算法和工具。它的设计目标是提供高性能、易于使用的库,并且在开源社区中被广泛应用。【实现步骤】1、安装python-opencv
2、安装dlib库
3、安装v4l2库代码实现】1、引入cv2、dlib以及线程等:import cv2
import dlib
import numpy as np
import time
from concurrent.futures import ThreadPoolExecutor
import threading
2、初始化dlib的面部检测器和特征点预测器detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
3、定义计算眼睛纵横比的函数def eye_aspect_ratio(eye):
    A = np.linalg.norm(np.array(eye) - np.array(eye))
    B = np.linalg.norm(np.array(eye) - np.array(eye))
    C = np.linalg.norm(np.array(eye) - np.array(eye))
    ear = (A + B) / (2.0 * C)                                                                                
    return ear
4、定义计算头部姿势的函数def get_head_pose(shape):
    # 定义面部特征点的三维坐标
    object_points = np.array([
        (0.0, 0.0, 0.0),             # 鼻尖
        (0.0, -330.0, -65.0),        # 下巴
        (-225.0, 170.0, -135.0),     # 左眼左眼角
        (225.0, 170.0, -135.0),      # 右眼右眼角
        (-150.0, -150.0, -125.0),    # 左嘴角
        (150.0, -150.0, -125.0)      # 右嘴角
    ], dtype=np.float32)

    image_pts = np.float32( for i in ])
    size = frame.shape
    focal_length = size
    center = (size // 2, size // 2)
    camera_matrix = np.array(
        [],
         ],
         ], dtype="double"
    )

    dist_coeffs = np.zeros((4, 1))
    (success, rotation_vector, translation_vector) = cv2.solvePnP(
        object_points, image_pts, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE
    )

    rmat, _ = cv2.Rodrigues(rotation_vector)
    angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
    return angles
5、定义眼睛纵横比阈值和连续帧数阈值EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 48
6、打开摄像头
我们先使用v4l2-ctl --list-devices来例出接在开发板上的列表信息:USB Camera: USB Camera (usb-xhci-hcd.0.auto-1.2):
        /dev/video60
        /dev/video61
        /dev/media7
在代码中填入60为摄像头的编号:cap = cv2.VideoCapture(60)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480)  # 降低分辨率
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)
7、创建多线程处理函数,实现采集与分析分离:# 多线程处理函数
def process_frame(frame):
    global COUNTER, TOTAL
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = detector(gray, 0)  # 第二个参数为0,表示不使用upsampling

    for face in faces:
        landmarks = predictor(gray, face)
        shape = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(68)]
        
        left_eye = shape
        right_eye = shape

        left_ear = eye_aspect_ratio(left_eye)
        right_ear = eye_aspect_ratio(right_eye)
        ear = (left_ear + right_ear) / 2.0

        if ear < EYE_AR_THRESH:
            with lock:
                COUNTER += 1
        else:
            with lock:
                if COUNTER >= EYE_AR_CONSEC_FRAMES:
                    TOTAL += 1
                COUNTER = 0

        # 绘制68个特征点
        for n in range(0, 68):
            x, y = shape
            cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)

        cv2.putText(frame, f"Eye AR: {ear:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
        cv2.putText(frame, f"Blink Count: {TOTAL}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)

        # 计算头部姿势
        angles = get_head_pose(shape)
        pitch, yaw, roll = angles
        cv2.putText(frame, f"Pitch: {pitch:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
        cv2.putText(frame, f"Yaw: {yaw:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
        cv2.putText(frame, f"Roll: {roll:.2f}", (10, 180), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)

        # 判断疲劳状态
        if COUNTER >= EYE_AR_CONSEC_FRAMES or abs(pitch) > 30 or abs(yaw) > 30 or abs(roll) > 30:
            cv2.putText(frame, "Fatigue Detected!", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)

    return frame8、创建图像显示线程:with ThreadPoolExecutor(max_workers=2) as executor:
    future_to_frame = {}
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # 提交当前帧到线程池
        future = executor.submit(process_frame, frame.copy())
        future_to_frame = frame

        # 获取已完成的任务结果
        for future in list(future_to_frame.keys()):
            if future.done():
                processed_frame = future.result()
                cv2.imshow("Frame", processed_frame)
                del future_to_frame
                break

        # 计算帧数
        fps_counter += 1
        elapsed_time = time.time() - start_time
        if elapsed_time > 1.0:
            fps = fps_counter / elapsed_time
            fps_counter = 0
            start_time = time.time()
            cv2.putText(processed_frame, f"FPS: {fps:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

        if cv2.waitKey(1) & 0xFF == ord('q'):
实现效果:

根据检测的结果,我们就可以来实现疲劳提醒等等的功能。
整体代码如下:import cv2
import dlib
import numpy as np
import time
from concurrent.futures import ThreadPoolExecutor
import threading

# 初始化dlib的面部检测器和特征点预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

# 修改字体大小
font_scale = 0.5  # 原来的字体大小是0.7,现在改为0.5

# 定义计算眼睛纵横比的函数
def eye_aspect_ratio(eye):
    A = np.linalg.norm(np.array(eye) - np.array(eye))
    B = np.linalg.norm(np.array(eye) - np.array(eye))
    C = np.linalg.norm(np.array(eye) - np.array(eye))
    ear = (A + B) / (2.0 * C)                                                                                
    return ear

# 定义计算头部姿势的函数
def get_head_pose(shape):
    # 定义面部特征点的三维坐标
    object_points = np.array([
        (0.0, 0.0, 0.0),             # 鼻尖
        (0.0, -330.0, -65.0),        # 下巴
        (-225.0, 170.0, -135.0),     # 左眼左眼角
        (225.0, 170.0, -135.0),      # 右眼右眼角
        (-150.0, -150.0, -125.0),    # 左嘴角
        (150.0, -150.0, -125.0)      # 右嘴角
    ], dtype=np.float32)

    image_pts = np.float32( for i in ])
    size = frame.shape
    focal_length = size
    center = (size // 2, size // 2)
    camera_matrix = np.array(
        [],
         ],
         ], dtype="double"
    )

    dist_coeffs = np.zeros((4, 1))
    (success, rotation_vector, translation_vector) = cv2.solvePnP(
        object_points, image_pts, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE
    )

    rmat, _ = cv2.Rodrigues(rotation_vector)
    angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
    return angles

# 定义眼睛纵横比阈值和连续帧数阈值
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 48

# 初始化计数器
COUNTER = 0
TOTAL = 0

# 创建锁对象
lock = threading.Lock()

# 打开摄像头
cap = cv2.VideoCapture(60)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480)  # 降低分辨率
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)

# 初始化帧计数器和时间戳
fps_counter = 0
start_time = time.time()

# 多线程处理函数
def process_frame(frame):
    global COUNTER, TOTAL
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = detector(gray, 0)  # 第二个参数为0,表示不使用upsampling

    for face in faces:
        landmarks = predictor(gray, face)
        shape = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(68)]
        
        left_eye = shape
        right_eye = shape

        left_ear = eye_aspect_ratio(left_eye)
        right_ear = eye_aspect_ratio(right_eye)
        ear = (left_ear + right_ear) / 2.0

        if ear < EYE_AR_THRESH:
            with lock:
                COUNTER += 1
        else:
            with lock:
                if COUNTER >= EYE_AR_CONSEC_FRAMES:
                    TOTAL += 1
                COUNTER = 0

        # 绘制68个特征点
        for n in range(0, 68):
            x, y = shape
            cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)

        cv2.putText(frame, f"Eye AR: {ear:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
        cv2.putText(frame, f"Blink Count: {TOTAL}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)

        # 计算头部姿势
        angles = get_head_pose(shape)
        pitch, yaw, roll = angles
        cv2.putText(frame, f"Pitch: {pitch:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
        cv2.putText(frame, f"Yaw: {yaw:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
        cv2.putText(frame, f"Roll: {roll:.2f}", (10, 180), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)

        # 判断疲劳状态
        if COUNTER >= EYE_AR_CONSEC_FRAMES or abs(pitch) > 30 or abs(yaw) > 30 or abs(roll) > 30:
            cv2.putText(frame, "Fatigue Detected!", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)

    return frame

with ThreadPoolExecutor(max_workers=2) as executor:
    future_to_frame = {}
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # 提交当前帧到线程池
        future = executor.submit(process_frame, frame.copy())
        future_to_frame = frame

        # 获取已完成的任务结果
        for future in list(future_to_frame.keys()):
            if future.done():
                processed_frame = future.result()
                cv2.imshow("Frame", processed_frame)
                del future_to_frame
                break

        # 计算帧数
        fps_counter += 1
        elapsed_time = time.time() - start_time
        if elapsed_time > 1.0:
            fps = fps_counter / elapsed_time
            fps_counter = 0
            start_time = time.time()
            cv2.putText(processed_frame, f"FPS: {fps:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

# 释放摄像头并关闭所有窗口
cap.release()
cv2.destroyAllWindows()
【总结】【米尔MYC-LR3576核心板及开发板】
这块开发板性能强大,能轻松实现对人脸的疲劳检测,通过计算结果后进入非常多的工业、人工智能等等的实用功能。