SiC MOSFET真的有必要使用沟槽栅吗?
2023年01月29日 22:58 发布者:刍狗
众所周知,“挖坑”是英飞凌的祖传手艺。在硅基产品时代,英飞凌的沟槽型IGBT(例如TRENCHSTOP系列)和沟槽型的MOSFET就独步天下。在碳化硅的时代,市面上大部分的SiC MOSFET都是平面型元胞,而英飞凌依然延续了沟槽路线。难道英飞凌除了“挖坑”,就不会干别的了吗?非也。因为SiC材料独有的特性,SiC MOSFET选择沟槽结构,和IGBT是完全不同的思路。咱们一起来捋一捋。关于IGBT使用沟槽栅的原因及特点,可以参考下面两篇文章:● 英飞凌芯片简史● 平面型与沟槽型IGBT结构浅析MOSFET全称金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor)。MOSFET的简化结构如下图所示:硅片表面生长一层薄薄的氧化层,其上覆盖多晶硅形成门极,门极两侧分别是N型注入的源极和漏极。当门极上施加的电压高于阈值电压时,门极氧化层下面就形成了强反型层沟道。这时再给漏源极之间施加一个正压,电子就可以从源极经过反型层沟道,源源不断地流到漏极。电流就这样形成了。
Lchannel:沟道长度,
Wchannel:沟道宽度,
COX:栅氧电容,
μn,channel:沟道电子迁移率
从上式可以看出,沟道电阻和沟道电子迁移率(μn,channel)成反比。沟道形成于SiO2界面处,因此SiO2界面质量对于沟道电子迁移率有直接的影响。通俗一点说,电子在沟道中流动,好比汽车在高速公路上行驶。路面越平整,车速就越快。如果路面全是坑,汽车就不得不减速。而不幸的是,碳化硅材料形成的SiC-SiO2界面,缺陷密度要比Si-SiO2高得多。这些缺陷在电子流过会捕获电子,电子迁移率下降,从而沟道电阻率上升。https://uploadcdntech.oneyac.com/upload/maket_res/news_res/20230104/hm0gihefgrq.png平面型器件怎么解决这个问题呢?再看一下沟道电阻的公式,可以看到有几个简单粗暴的办法:提高栅极电压Vgs,或者降低栅极氧化层厚度,或者降低阈值电压Vth。前两个办法,都会提高栅极氧化层中的电场强度,但太高的电场强度不利于器件的长期可靠性(栅氧化层的击穿电压一般是10MV/cm,但4MV/cm以上的场强就会提高器件长期潜在失效率)。如果器件的阈值电压Vth太低,在实际开关过程中,容易发生寄生导通。更严重的是,阈值电压Vth会随着温度的升高而降低,高温下的寄生导通问题会更明显。https://uploadcdntech.oneyac.com/upload/maket_res/news_res/20230104/ygu5xmplbvj.png平面型SiC MOSFET栅氧薄弱点好像进入到一个进退两难的境地了?别忘了,碳化硅是各向异性的晶体,不同的晶面,其态密度也是不同的。英飞凌就找到了一个晶面,这个晶面与垂直方向有4°的夹角,在这个晶面上生长SiO2, 得到的缺陷密度是最低的。这个晶面接近垂直于表面,于是,英飞凌祖传的”挖坑”手艺,就派上用场了。CoolSiC™ MOSFET也就诞生了。需要强调一下,不是所有的沟槽型MOSFET都是CoolSiC™! CoolSiC™是英飞凌碳化硅产品的商标。CoolSiC™ MOSFET具有下图所示非对称结构。
深P阱的另一个功能,是作为体二极管的阳极。通常的MOSFET体二极管阳极都是由P基区充当,深P阱的注入浓度和深度都高于P基区,可以使体二极管导通压降更低,抗浪涌能力更强。
好的,CoolSiC™ MOSFET就先介绍到这里了。CoolSiC™ MOSFET不是单纯的沟槽型MOSFET,它在独特的晶面上形成沟道,并且有非对称的深P阱结构,这使得CoolSiC™ MOSFET具有较低的导通电阻,与Si器件类似的可靠性,以及良好的体二极管特性。
找元器件现货上唯样商城!