Ultra Low-Power Biomedical Signal Processing

2012年04月24日 15:54    发布者:看门狗
Ultra Low-Power Biomedical Signal Processing - An Analog Wavelet Filter Approach for Pacemakers
Series: Analog Circuits and Signal Processing
Haddad, Sandro A.P., Serdijn, Wouter A.

2009, X, 218 p., Hardcover
ISBN: 978-1-4020-9072-1



About this book
Ultra Low-Power Biomedical Signal Processing describes signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electrocorticogram (ECoG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and others that are more diffuse (e.g., small oscillations). This requires the use of analysis methods sufficiently versatile to handle events that can be at opposite extremes in terms of their time-frequency localization.

Wavelet Transform (WT) has been extensively used in biomedical signal processing, mainly due to the versatility of the wavelet tools. The WT has been shown to be a very efficient tool for local analysis of non-stationary and fast transient signals due to its good estimation of time and frequency (scale) localizations. Being a multi-scale analysis technique, it offers the possibility of selective noise filtering and reliable parameter estimation.

Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection.

In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.

Written for:
Academic and industrial researchers in signal processing, electronic circuit design, low-power circuit design, biomedical circuits and systems; graduate students in electrical engineering, computer engineering and biomedical engineering

74687
该文章有附件资料,如需下载请访问 电脑版

网友评论

rinllow6 2012年04月26日
谢谢!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
daizhi1970 2012年08月03日
O(∩_∩)O谢谢
daizhi1970 2012年08月03日
O(∩_∩)O谢谢
nudt_dhl 2014年11月11日
thanks for your sharing!
jiang4300 2014年11月20日
Thanks a lot, good book
radio926 2015年09月30日
谢谢分享
neter 2015年11月19日
感謝樓主無私分享